National Aeronautics and Space Administration Goddard Space Flight Center Contract No. NAS-5-3760

ST - PF - 10 312

NASA TT F-9660

8 0	N65-19708	
TY FORM	(ACCESSION NUMBER)	(тнео)
PAGIL	(PAGES)	(COPE)
	(NASA CR OR TMX OR AD NUMBER)	(CATEGORY)

INTERPRETATION OF CERTAIN PHENOMENA OF THE MAGNETOSPHERE BY PLASMA INSTABILITIES

by
Robert Stefan,
Guy Vasseur

[FRANCE]

GPO PRICE \$	
OTS PRICE(S) \$	
Hard copy (HC)	
Microfiche (MF)	
Microfiche (MF) 7 C. XV	

INTERPRETATION OF CERTAIN PHENOMENA OF THE MAGNETQSPHERE BY PLASMA INSTABILITIES *

Comptes-Rendus de l'Académie des Sciences, Groupe 10 T. 260, pp. 1465-1467, Paris, 1 February 1965 by Robert Stefant and Guy Vasseur

R. Gallet [1] interprets certain forms of VLF emission by interaction of a beam of charged particles (electrons) with the magnetospheric plasma. J. Neugeld and H. Wright [2] have also studied the interaction of a beam of particles (electrons and ions) with a plasma, whose Denisse and Lacroix characteristic parameter [3]

$$\Lambda = \Omega_{\bullet}^{2}/(\Omega_{H}\Omega_{i})$$

varies from 1 to 10^6 (which includes the case of the magnetosphere where $10^2 < A < 10^6$). We have reconsidered the bases of Neufeld and Wright's calculations with the view of interpreting certain natural ULF emissions [4] on one hand, and the case of ionization distributed along the lines of force of the Earth's magnetic field, on the other [5, 6].

We consider a cold plasma, composed of electrons and only one kind of ion, and placed in the Earth's magnetic field B. For a given angle φ between the field B and the wave vector \mathbf{k} , there exist four propagation modes [4]. In particular, for strictly transverse waves and at $\varphi = 0$, the dispersion equation is written

$$F(\omega, k) = \omega^2 - k^2 c^2 - \frac{\Omega_o^2 \omega^2}{(\omega - \Omega_H)(\omega + \Omega_I)}.$$
 (1)

^{*} Interprétation de certains phénomènes de la magnétosphère par des instabilités de plasma.

Assume then a homogenous, indefinite, homokinetic beam of electrons and protons, of low density relative to the plasma it crosses. Their velocity \mathbf{v} is inclined to the field B by an angle $\mathbf{\psi}$. This beam has two natural frequencies — the Langmuir and the gyrofrequency, which are subject to Doppler effect on account of the velocity \mathbf{v} . Limiting ourselves to waves associated to gyrofrequency and to vector \mathbf{k} parallel to B, the beam's dispersion equation corresponds to two purely transverse pulsation waves:

$$\omega = kr\beta\cos\psi \mp \Omega_{H,\ell}(1-\beta^2)^{\frac{1}{2}} \qquad \beta = \frac{r}{c}. \tag{2}$$

The interaction of the beam with plasma is represented in Fig.1 by the intersection of representative lines of the equation (1) in the coordinates ω , k: a, b for the electron beam, c, d for the ion beam, and of curves e, f for the plasma, which are representative of the equation (2). J. Neufeld and H. Wright have shown that a criterion of instability made to intervene the sign of $\partial F/\partial \omega$. But they studied only of the two permitted Doppler waves (corresponding to the curve a for the electrons and to the curve d for the ions).

For a beam of electrons (<u>a</u> and <u>b</u>) examination of the figure and above criterion show that two frequencies are emitted at points <u>a</u> and <u>b</u>, such as $-\Omega_i < \omega_{a_i} < 0$ and $0 < \omega_{b_i} < \Omega_{B}$. At any rate, we obtain the same result starting from the criterion of instablity given by Lepechinsky and Rolland [5].

Only strongly relativistic electrons can induce by this mechanism an emission frequency sensibly different from Ω_i or $\Omega_{\rm H}$. It would not be the same for the excitation of space charge waves by a very diluted electron beam.

For the proton beam, two, four or six frequencies can be excited depending upon the value of β .

The point c_1 for the line c corresponds to a wave for which $-\Omega_i < \omega < 0$, $|\omega/\Omega_i| < 1[9]$. The following table summarizes the different

possibilities for the other emissions of the line d, depending upon the value of β .

We see that this plasma-beam system gives way to an emission of extremely low frequency $(|\omega/\Omega_i| < 10^{-2})$ and of another, or three frequencies, of which two can be very close, depending upon the value of the parameters.

TABLE 1

β	0	$\sqrt{\frac{7}{A\cos^2\psi}}$	$\sqrt{rac{\Omega_{ m H}}{4\Omega_{ m I} A \cos^2\!\psi}}$				
Egurative Points	d,		d_1 d_2 d_3	. d' ₁			
ω	ı émission ω≃Ω _{II}	1 émission $\frac{\Omega_{\rm H}}{2} < \omega < \Omega_{\rm H}$ 2 very close emissions $\omega \simeq 2\Omega_{\rm I}$	3 émissions	1 émission $\omega \simeq 0$ 2 very close e missions $\omega \simeq \frac{\Omega_{\rm H}}{2}$	ı émission ω≃ο		

Fig.1. - Interaction of a plasma [e, f] with a beam of electrons [a, b] or protons [c, d or c', d' or c'', d'']

Some of these possibilities provide an interpretation of geophysical phenomena of the above-mentioned type.

**** THE END ****

Contract No. NAS-5-3760

Consultants and Designers, Inc.
Arlington, Virginia

Translated by ANDRE L. BRICHANT on 28 March 1965

REFERENCES

- [1].- R.M. GALLET, Natural electromagnetic phenomena below 30 kc/sec.
 D.F. Bleil, edit. Plenium Press, 167-204
- [2].- J. NEUFFLD a. H. WRIGHT.- Phys. Rev. 29, 1489-1507, 1963.
- [3].- J.F. DENISSE a. J.L. DELCROIX., Théorie des ondes dans les plasmas.

 (Theory of waves in plasmas). Dunod, Paris 1962.
- [4] V. A. TROITSKAYA, R. GENDRIN a. R. STEFANT C.-R. 259, 1175, 1964.
- [5].- F. du CASTEL.- C.R., 258, 5689, 1964.
- [6].- J.M. FAYNOT., Ibid. 258, p. 5692, 1964.
- [7] .- E. ASTROM.- Arkiv des Fysik, 2, 443, 1950.
- [8].- D. LEPECHINSKY a. P. ROLLAND. J.Atm. a. Terr. Phys., 26, 31, 1964.

^{[*].-} For the comprehension of Fig.1 we have omitted the additional intersections of the line c with the curve f. This type of interaction is identical to that studied by Gallet for the space charge waves.

DISTRIBUTION

GODDARD	SPACE F.C.		NAS	A HOS	OT	HER CEN	VTERS	
600	TOWNSEND STROUD		SS SG	NEWELL, CLARI	K		MES R.C.	
610	MEREDITH SEDDON			SCHARDT OPP		SONETI LIBRAF		
611	McDONALD DAVIS ABRAHAM	[3]	SL	SCHMERLING DUBIN LIDDEL		<u>L.A</u> 160	ANGLEY R.C. ADAMSON	
	BOLDT	· f =3	OD	FELLOWS		_	HESS	[2]
612	HEPPNER NESS	[3]	SM	HIPSHER HOROWITZ FOSTER		185 213 231	WEATHERWAX KATZOFF O'SULLIVAN	رح
613 614 615	KUPPERIAN LINDSAY WHITE BOURDEAU BAUER SERBU STONE	[3]	RR RRP RV-1 RTR ATSS	ALLENBY GILL BADGLEY KURZWEG GESSOW PEARSON NEILL SCHWIND	[5]	SNYDEE <u>U</u> COLEMA	JCLA	
640 641	HESS JONES STERN TEMKIN NAKADA	[3]	WX	SWEET	נע	MITCOX		
660 252 256	GI for SS LIBRARY FREAS	[5] [3]						